3 results for group: enhanced-rock-weathering


Reduced accrual of mineral‐associated organic matter after two years of enhanced rock weathering in cropland soils, though no net losses of soil organic carbon

ABSTRACT: Enhanced rock weathering (ERW), the application of crushed silicate rock to soil, can remove atmospheric carbon dioxide by converting it to (bi) carbonate ions or solid carbonate minerals. However, few studies have empirically evaluated ERW in field settings. A critical question remains as to whether additions of crushed rock might positively or negatively affect soil organic matter (SOM)—Earth’s largest terrestrial organic carbon (C) pool and a massive reservoir of organic nitrogen (N). Here, in three irrigated cropland field trials in California, USA, we investigated the effect of crushed meta-basalt rock additions on different ...

Potential for atmospheric carbon dioxide removal in mafic quarries via enhanced rock weathering of basalt fines

ABSTRACT Enhanced rock weathering (ERW) is a recognized carbon dioxide removal (CDR) strategy that uses crushed silicate rock (e.g., basalt) to capture atmospheric CO2, offering co-benefits such as improved soil health and increased crop production [1]. One of the main disadvantages of ERW includes the production of energy needed to crush and transport rocks to their application site [2]. Basalt quarries might be capable of removing CO2 on-site by optimizing the management of their quarry fines. This approach would reduce transport-related emissions while repurposing valuable and previously underutilized material. To test this possibility, ...

The potential for carbon dioxide removal by enhanced rock weathering in the tropics: An evaluation of Costa Rica

Abstract Tropical environments show great potential to sequester CO2 by enhanced rock weathering (ERW) of powdered mafic rocks applied to agricultural fields. This study seeks to assess carbon dioxide reduction (CDR) potential in the humid tropics (1) by experimental weathering of mafic rock powders in conditions simulating humid tropical soils, and (2) from weathering rates determined from a Holocene tropical soil chronosequence where parent material is andesitic sediments. Experimentally determined weathering rates by leaching of basaltic andesites from Costa Rica (Arenal and Barva) for 50 t ha−1 applications indicate potential sequestration ...