178 results for group: journal-article


Impact of Climate on the Global Capacity for Enhanced Rock Weathering on Croplands

Seung H. Baek, Yoshiki Kanzaki, Juan M. Lora, Noah Planavsky, Christopher T. Reinhard, Shuang Zhang Abstract Enhanced rock weathering (ERW) on croplands has emerged as an economically and ecologically promising negative emissions technology. However, estimated total carbon sequestration potential from ERW on croplands and its potential sensitivity to climate conditions requires further understanding. Here we combine 1-D reactive transport modeling with climate model experiments to simulate ERW on ∼1,000 agricultural sites globally. Applying a fixed rate of 10 tons of basalt dust per hectare on these sites sequesters 64 gigatons of CO2 over a ...

Improved net carbon budgets in the US Midwest through direct measured impacts of enhanced weathering

Ilsa B. Kantola, Elena Blanc-Betes, Michael D. Masters, Elliot Chang, Alison Marklein, Caitlin E. Moore, Adam von Haden, Carl J. Bernacchi, Adam Wolf, Dimitar Z. Epihov, David J. Beerling, Evan H. DeLucia Abstract Terrestrial enhanced weathering (EW) through the application of Mg- or Ca- rich rock dust to soil is a negative emission technology with the potential to address impacts of climate change. The effectiveness of EW was tested over 4 years by spreading ground basalt (50 t ha−1 year−1) on maize/soybean and miscanthus cropping systems in the Midwest US. The major elements of the carbon budget were quantified through ...

Enhanced clay formation key in sustaining the Middle Eocene Climatic Optimum

Alexander J. Krause, Appy Sluijs, Robin van der Ploeg, Timothy M. Lenton & Philip A. E. Pogge von Strandmann Abstract The Middle Eocene Climatic Optimum (around 40 million years ago) was a roughly 400,000-year-long global warming phase associated with an increase in atmospheric CO2 concentrations and deep-ocean acidification that interrupted the Eocene’s long-term cooling trend. The unusually long duration, compared with early Eocene global warming phases, is puzzling as temperature-dependent silicate weathering should have provided a negative feedback, drawing down CO2 over this timescale. Here we investigate silicate weathering during this ...

Constraining the Potential of Land-Based Negative Emissions Technologies (NETs) From a Data-Driven Perspective

Rafael M. Santos, Francisco Araujo, Hiral Jariwala, Reza Khalidy, Fatima Haque and Yi Wai Chiang Introduction Enhanced rock weathering (ERW), as a negative emissions technology for climate change mitigation, has received far more public, governmental, and academic attention (according to the authors’ account of engagement with such actors) in the past year than in the many years since its first mention in the literature. The term ERW was conceived by Beerling (2017), but the field of research referred to as “enhanced weathering” (EW) can see its origins, by this name, at least as far back as the works of Power and Southam (2005) and ...

India’s biogeochemical capacity to attain food security and remediate climate

Ishfaq Ahmad Mir, Thomas J.F. Goreau, Joanna Campe, James Jerden Abstract In order to supply wholesome food and slow down climate change, this paper covers India’s agrogeological resources. The soils are the result of the weathering of rocks with ages ranging from more than a billion years to the most recent Holocene. Because they are severely deficient in vital minerals, many soils have low agricultural production. In addition to helping to fertilise soils, reduce atmospheric carbon dioxide levels, and stop the acidification of the Indian Ocean, rock powder weathering and bio-char have significant positive effects on the productivity of ...

The Mining Industry’s Role in Enhanced Weathering and Mineralization for CO2 Removal

Ian M. Power, Carlos Paulo, Kwon Rausis Abstract Enhanced weathering and mineralization (EWM) aim to remove carbon dioxide (CO2) from the atmosphere by accelerating the reaction of this greenhouse gas with alkaline minerals. This suite of geochemical negative emissions technologies has the potential to achieve CO2 removal rates of >1 gigatonne per year, yet will require gigatonnes of suitable rock. As a supplier of rock powder, the mining industry will be at the epicenter of the global implementation of EWM. Certain alkaline mine wastes sequester CO2 under conventional mining conditions, which should be quantified across the industry. Furtherm...

Pathways, roundabouts, roadblocks, and shortcuts to safe and sustainable deployment of enhanced rock weathering in agriculture

Rafael M. Santos, Francisco Araujo, Hiral Jariwala, Reza Khalidy, Fatima Haque and Yi Wai Chiang Introduction Enhanced rock weathering (ERW), as a negative emissions technology for climate change mitigation, has received far more public, governmental, and academic attention (according to the authors’ account of engagement with such actors) in the past year than in the many years since its first mention in the literature. The term ERW was conceived by Beerling (2017), but the field of research referred to as “enhanced weathering” (EW) can see its origins, by this name, at least as far back as the works of Power and Southam (2005) and Lenton ...

Improving food security and farmland carbon sequestration in China through enhanced rock weathering: Field evidence and potential assessment in different humid regions

Fuxing Guo, Haowei Sun, Jing Yang, Linsen Zhang, Yan Mu, Yanping Wang, Fuyong Wu Abstract\ Enhanced rock weathering (ERW) in farmland is an emerging carbon dioxide removal technology with crushed silicate rocks for soil improvement. However, due to climatic variability and field data limitations, uncertainties remain regarding the influence of ERW on food security and soil carbon pools in temperate regions. This study focused to evaluate the crop productivity and carbon sequestration potential of farmland ERW in China by conducting field monitoring in different humid regions and ERW performance model. Additionally, the contribution of climate, ...

Enhanced weathering in the U.S. Corn Belt delivers carbon removal with agronomic benefits

David J. Beerling, Dimitar Z. Epihov, Ilsa B. Kantola, Michael D. Masters, Tom Reershemius, Noah J. Planavsky, Christopher T. Reinhard, Jacob S. Jordan, Sarah J. Thorne1, James Weber, Maria Val Martin, Robert P. Freckleton, Sue E. Hartley, Rachael H. James, Christopher R. Pearce, Evan H. DeLucia, Steven A. Banwart Abstract Enhanced weathering (EW) with crushed basalt on farmlands is a promising scalable atmospheric carbon dioxide removal strategy that urgently requires performance assessment with commercial farming practices. Our large-scale replicated EW field trial in the heart of the U.S. Corn Belt shows cumulative time integrated carbon ...

Basalt addition improves the performance of young grassland monocultures under more persistent weather featuring longer dry and wet spells

Simon Reynaert, Arthur Vienne, Hans J De Boeck, Tommy D'Hose, Ivan Janssens, Ivan Nijs, Miguel Portillo-Estrada, Erik Verbruggen, Sara Vicca, Sílvia Poblador Abstract Global warming is altering the intra-annual variability of precipitation patterns in the mid-latitudes, including a shift towards longer dry and wet spells compared to historic averages. Such fluctuations will likely alter soil water and nutrient dynamics of managed ecosystems which could negatively influence their functioning (e.g., productivity and fodder quality). Here, we investigated whether basalt addition could attenuate effects of increasingly persistent precipitation ...